Chapter 1. Introduction to R, and Descriptive Data Analysis

What is R: an environment for data analysis and graphics based on S language

- a full-featured programming language
- freely available to everyone (with complete source code)
- Easier access to the means of handling BigData such as parallel computation, Hadoop, distributed computation.
- official homepage: http://www.R-project.org
1.1 Installation

Installing R: R consists of two major parts: the base system and a collection of (over 8.5K) user contributed add-on packages, all available from the above website.

To install the base system, Windows users may follow the link

http://CRAN.R-project.org/bin/windows/base/release.htm

Note. The base distribution comes with some high-priority add-on packages such as graphic systems, linear models etc.

After the installation, one may start R in the PC by going to **Start -> Statistics -> R**, or simply double-click the logo ‘R’ on your desktop. An R-console will pop up with a prompt character like ‘>’.
R may be used as a calculator. Of course it can do much more. Try out

\[\sqrt{9}/3 - 1 \]

To quit R, type at the prompt ‘q()’.

It is strongly advised to use RStudio instead of R. You may find it with the link

https://www.rstudio.com/

We assume you use RStudio throughout the course.
To define a vector \(x \) consisting of integers 1, 2, \cdots, 100

\[
> x <- 1:100 \\
> x
\]

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 \\
55 & 56 & 57 & 58 & 59 & 60 & 61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 \\
73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 \\
91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100
\end{bmatrix}
\]

\[
> \text{sum}(x) \\
> [1] 5050
\]

Or we may also try

\[
> y <- (1:100)^2 \\
> y
\]

\[
\begin{bmatrix}
1 & 4 & 9 & 16 & 25 & 36 & 49 & 64 & 81 & 100 & 121 & 144 \\
13 & 169 & 196 & 225 & 256 & 289 & 324 & 361 & 400 & 441 & 484 & 529 & 576 \\
25 & 625 & 676 & 729 & 784 & 841 & 900 & 961 & 1024 & 1089 & 1156 & 1225 & 1296 \\
37 & 1369 & 1444 & 1521 & 1600 & 1681 & 1764 & 1849 & 1936 & 2025 & 2116 & 2209 & 2304 \\
49 & 2401 & 2500 & 2601 & 2704 & 2809 & 2916 & 3025 & 3136 & 3249 & 3364 & 3481 & 3600
\end{bmatrix}
\]
One may also try \(x+y \), \((x+y)/(x+y) \), \text{help}(\text{log}), \text{log}(x) \) etc.

Additional packages can be installed directly from the R prompt. Information on the available packages is available at

\[\text{http://cran.r-project.org/web/views/} \]
\[\text{http://cran.r-project.org/web/packages/} \]
For example, one may install HSAUR2 – *A Handbook of Statistical Analysis Using R (2nd edition)*:

```r
> install.packages("HSAUR2")
> library("HSAUR2")  # To load all the objects in the package
                  # into the current session
```

You may start an R help manual using command `help.start()`. By clicking Packages in the manual, you will see `HSAUR2` is listed among the installed packages.
1.2 Help and documentation

To start a manual page of R: help.start()

Alternatively we may access online manual at

http://cran.r-project.org/manuals.html

To access a manual for function ‘mean’: help(mean), or ?mean

To access the info on an added-on package: help(package="HSAUR2")

To access the info on a data set or a function in the installed package: help(package="HSAUR2", men1500m)
To load all the functions in an added-on package: `library("HSAUR2")`

To load a data set from the installed package into the current session:
`data(men1500m, package="HSAUR2")`

Type `men1500m` to print out all the info in the data set ‘men1500m’.

Two other useful sites:

R Newsletter: http://cran.r-project.org/doc/Rnews/

R FAQ: http://cran.r-project.org/faqs.html
You may also simply follow the links on the main page of the R project

http://www.R-project.org

Last but certainly not least, google whatever questions often leads to most helpful answers
1.3 Data Import/Export

The easiest form of data to import into R is a simple text file. The primary function to import from a text file is `scan`. You may check out what `scan` can do: ``` > ?scan ```

Create a plain text file `simpleData`, in the folder `stats1` in your Drive D, as follow:

```
This is a simple data file, created for illustration of importing data in text files into R
1  2  3  4
5  6  7  8
9 10 11 12
```
It has two lines of explanation and 3 lines numbers. The R session below imports it into R as a vector \(x \) and \(3 \times 4 \) matrix \(y \), perform some simple operations. Note the flag \(\text{skip}=2 \) instructs R to ignore the first two lines in the file.

Note. R ignores anything after ‘#’ in a command line.

```r
> x <- scan("D:/statsI/simpleData.txt", skip=2)
> x                     # print out vector x
[1] 1 2 3 4 5 6 7 8 9 10 11 12
> length(x)
[1] 12
> mean(x); range(x)     # write 2 commands in one line to save space
[1] 6.5
[1] 1 12
> summary(x)            # a very useful command!

          Min. 1st Qu.  Median      Mean 3rd Qu.     Max.  
1.00   3.75   6.50     6.50   9.25    12.00
```
> y <- matrix(scan("D:/statsI/simpleData.txt", skip=2), byrow=T, ncol=4)
> y

```
[1,]  1  2  3  4
[2,]  5  6  7  8
[3,]  9 10 11 12
```

> dim(y)

```
[1] 3 4
```

> y[1,]

```
[1] 1 2 3 4
```

> y[,2]

```
[1] 2 6 10
```

> y[2,4]

```
[1] 8
```
A business school sent a questionnaire to its graduates in past 5 years and received 253 returns. The data are stored in a plain text file ‘Jobs’ which has 6 columns:

- **C1**: ID number
- **C2**: Job type, 1 - accounting, 2 - finance, 3 - management, 4 - marketing and sales, 5 - others
- **C3**: Sex, 1 - male, 2 - female
- **C4**: Job satisfaction, 1 - very satisfied, 2 - satisfied, 3 - not satisfied
- **C5**: Salary (in thousand pounds)
- **C6**: No. of jobs after graduation

<table>
<thead>
<tr>
<th>IDNo.</th>
<th>JobType</th>
<th>Sex</th>
<th>Satisfaction</th>
<th>Salary</th>
<th>Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>51</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>52</td>
<td>5</td>
</tr>
</tbody>
</table>

... ...
We import data into R using command `read.table`

```
> jobs <- read.table("D:/statsI/Jobs.txt"); jobs
table
 V1  V2  V3  V4  V5  V6
1 IDNo. JobType Sex Satisfaction Salary Search
2 1   1   1   3   51  1
3 2   4   1   3   38  2
4 3   5   1   3   51  4
...
> dim(jobs)
table
[1] 254  6
> jobs[1,]
table
 V1  V2  V3  V4  V5  V6
1 IDNo. JobType Sex Satisfaction Salary Search
```
We repeat the above again by taking the 1st row as the names of variables (header=T) and the entries in 1st column as the names of the rows (row.names =1).

```r
> jobs <- read.table("D:/statsI/Jobs.txt", header=T, row.names=1)
> dim(jobs)
[1] 253 5
> names(jobs)
[1] "JobType" "Sex" "Satisfaction" "Salary" "Search"
> class(jobs)
[1] "data.frame"
> class(jobs[,1]); class(jobs[,2]); class(jobs[,3]);
   class(jobs[,4]); class(jobs[,5])
[1] "integer"
[1] "integer"
[1] "integer"
[1] "integer"
[1] "integer"
```
Since the first three variables are nominal, we may specify them as ‘factor’, while "Salary" can be specified as ‘numeric’:

```r
> jobs <- read.table("D:/statsI/Jobs.txt", header=T, row.names=1, 
  colClasses = c("factor", "factor", "factor", 
  "numeric", "integer"))
> class(jobs[,1]); class(jobs[,2]); class(jobs[,3]); 
  class(jobs[,4]); class(jobs[,5])
[1] "factor"
[1] "factor"
[1] "factor"
[1] "numeric"
[1] "integer"
```

Note. we need to specify the class for the row name variable (i.e. 1st column) as well. Now we do some simple **descriptive statistical analysis** for this data.
> `table(jobs[,1])`

```
  1  2  3  4  5
73 52 36 64 28   # No. of graduates with 5 different JobTypes
```

> `t <- table(jobs[,2], jobs[,1], deparse.level=2)` # store table in `t`

> `t`

```
# No. of males with 5 different JobTypes
jobs[, 1]   1  2  3  4  5
jobs[, 2]   1 35 30 18 39 13
            2 38 22 18 25 15   # No. of females with 5 different JobTypes
```

> `100*t[1,]/sum(t[1,])`

```
  1  2  3  4  5
25.92593 22.22222 13.33333 28.88889 9.62963   # Percentages of males with 5 different JobTypes
```

> `100*t[2,]/sum(t[2,])`

```
  1  2  3  4  5
32.20339 18.64407 15.25424 21.18644 12.71186   # Percentages of females with 5 different JobTypes
```

> `barplot(t, main="No. of graduates in 5 different job categories", legend.text=c("male", "female"), names.arg=c("accounting", "finance", "management", "marketing", "others"))` # draw a bar-plot
No. of graduates in 5 different job categories

<table>
<thead>
<tr>
<th>Job Category</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>Finance</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>Management</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Marketing</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Others</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
The barplot shows the difference in job distribution due to gender. We may also draw pie-plots, which are regarded as less effective.

```r
> pie(t[1,]+t[2,],label=c("accounting","finance","management", "marketing","others")); text(0,1, "Total", cex=2)
> pie(t[1,],label=c("accounting","finance","management", "marketing","others")); text(0,1, "Male", cex=2)
> pie(t[2,],label=c("accounting","finance","management", "marketing","others")); text(0,1, "Female", cex=2)
```
Now let us look at the salary (jobs[,4]) distribution, and the impact due to gender.

```r
> mSalary <- jobs[,4][jobs[,2]==1]
  # extract the salary data from male
> fSalary <- jobs[,4][jobs[,2]==2]
  # extract the salary data from female
> summary(jobs[,4]); summary(mSalary); summary(fSalary)
                  Min. 1st Qu. Median        Mean 3rd Qu.       Max.       
jobs[,4]       26.00   43.00   47.00       47.13   52.00     65.00       
mSalary       34.00   44.00   48.00       48.11   53.00     65.00       
fSalary       26.00   42.25   46.00       46.00   51.00     61.00       
> hist(jobs[,4], col="gray", nclass=15, xlim=c(25,66),
    main="Histogram of Salaries (Total)")
  # plot the histogram of salary data
> hist(mSalary, col="blue", nclass=15, xlim=c(25,66),
    main="Histogram of Salaries (Male)")
```
> hist(fSalary, col="red", nclass=15, xlim=c(25,66), main="Histogram of Salaries (Female)"

You may also try stem-and-leaf plot: stem(jobs[,4])
To export data from R, use `write.table` or `write`.

To write `jobs` into a plain text file ‘Jobs1.txt’:

```r
> write.table(jobs, "Jobs1.txt")
```

which retains both the row and column names. Note the different entries in the file are separated by spaces.

We may also use

```r
> write.table(jobs, "Jobs2.txt", row.names=F, col.names=F),
> write.table(jobs, "Jobs3.txt", sep=" ",")
```
Compare the three output files.

Note that the values of factor variables are recorded with “ “. To record all the levels of factor variables as numerical values, we need to define a pure numerical data.frame first:

```r
t <- data.frame(as.numeric(jobs[,1]), as.numeric(jobs[,2]),
                as.numeric(jobs[,3]), jobs[,4], jobs[,5])
write.table(t, "Jobs4.txt")
```

The file "Jobs4.txt" contains purely numerical values.

Note. (i) Working directory — all exported files are saved in ‘My Documents’ by default. You may change your working directory by clicking

 File -> Change dir...
in the RGui window. For example, I create on my laptop D:\statsI as my working directory for this course.

(ii) Saving a session — when you quit an R session `q()`, you will be offered an option to ‘save workspace image’. By clicking on "yes", you will save all the objects (including data sets, loaded functions from added-on packages etc) in your R session. You may continue to work on this session by directly double-clicking on the image file in your working directory.

A useful tip: Create a separate working directory for each of your R projects.

1.4 Organising an Analysis

An R analysis typically consists of executing several commands. Instead of typing each of those commands on the R prompt, we may collect them
into a plain text file. For example, the file "jobsAnalysis.r" in my working directory reads like:

```r
jobs <- read.table("Jobs.txt", header=T, row.names=1)
  # File "Jobs.txt" is in the working directory now
mSalary <- jobs[,4][jobs[,2]==1]
fSalary <- jobs[,4][jobs[,2]==2]
summary(jobs[,4])
summary(mSalary)
summary(fSalary)
par(mfrow=c(3,1))  # display 3 figures in one column
hist(jobs[,4], col="gray", nclass=15, xlim=c(25,66),
    main="Histogram of Salaries (Total)"
hist(mSalary, col="blue", nclass=15, xlim=c(25,66),
    main="Histogram of Salaries (Male)"
hist(fSalary, col="red", nclass=15, xlim=c(25,66),
    main="Histogram of Salaries (Female)"
```

You may carry out the project by sourcing the file into an R session:
Also try source("jobAnalysis.r").

1.5 Writing functions in R

For some repeated task, it is convenient to define a function in R. We illustrate this idea by an example.

Consider the famous ‘Birthday Coincidences’ problem: In a class of k students, what is the probability that at least two students have the same birthday?

Let us make some assumptions to simplify the problems:
(i) only 365 days in every year,
(ii) every day is equally likely to be a birthday,
(iii) students’ birthdays are independent with each other.

With k people, the total possibilities is $(365)^k$.

Consider the complementary event: all k birthdays are different. The total such possibility is

$$365 \times 364 \times 363 \times \cdots \times (365 - k + 1) = \frac{365!}{(365 - k)!}$$

So the probability that at least two students have the same birthday is

$$p(k) = 1 - \frac{365!}{(365 - k)!(365)^k}.$$
We may use R to compute $p(k)$. Unfortunately factorials are often too large, e.g. $52! = 8.065525e + 67$, and often cause overflow in computer. We adopt the alternative formula

$$p(k) = 1 - \exp\{\log(365!) - \log((365 - k)!) - k \log(365)\}.$$

We define a R-function pBirthday to perform this calculation for different k.

```r
> pBirthday <- function(k) + 1 - exp(lfactorial(365) - lfactorial(365-k) - k*log(365))
  # lfactorial(n) returns log(n!)
> pBirthday(100)
[1] 0.999997  # probability with a class of 100 students
> x <- c(20, 30, 40, 50, 60)
> pBirthday(x)
[1] 0.4114384 0.7063162 0.8912318 0.9703736 0.9941227
```
With 20 students in class, the probability of having overlapping birthdays is about 0.41. But with 60 students, the probability is almost 1, i.e., *it is almost always true that at least 2 out of 60 students have the same birthday.*

Note. The expression in a function may have several lines. In this case the expression is enclosed in curly braces `{ }`, and the final line determines the return value.
Another Example — The capture and recapture problem

To estimate the number of whitefish in a lake, 50 whitefish are caught, tagged and returned to the lake. Some time later another 50 are caught and only 3 are tagged ones. Find a reasonable estimate for the number of whitefish in the lake.

Suppose there are \(n \) whitefish in the lake. Catching 50 fish can be done in \(\binom{n}{50} \) ways, while catching 3 tagged ones and 47 untagged can be done in \(\binom{50}{3} \binom{n - 50}{47} \) ways. Therefore the probability for the latter event to occur is

\[
P_n = \frac{\binom{50}{3} \binom{n - 50}{47}}{\binom{n}{50}}.
\]
Therefore, a reasonable estimate for n should be the value at which P_n obtains its maximum. We use R to compute P_n and to find the estimate.

```r
> Pn <- function(n) {
+   tmp <- choose(50, 3) * choose(n-50, 47)
+   tmp/choose(n, 50)
+ }                # Definition for function Pn ends here
> n <- 97:2000     # as there are at least 97 fish in the lake
> plot(n, Pn(n), type='l')
```

It produces the plot of P_n against n:
To find the maximum:

```r
> m <- max(Pn(n)); m
[1] 0.2382917
> n[Pn(n)==m]
[1] 833
```

Hence the estimated number of fish in the lake is 833.
1.6 Control structure: loops and conditionals

An if statement has the form

```plaintext
if (condition) expression1 else expression2
```

It executes ‘expression1’ if ‘condition’ is true, and ‘expression2’ otherwise. When ‘condition’ contains several lines, they should be enclosed in curly braces `{ }`. The same applies to expressions.

The above statement can be compactly written in the form

```plaintext
ifelse(condition, expression1, expression2)
```

When the else-part is not present:

```plaintext
if (condition) expression
```

It executes ‘expression’ if ‘condition’ is true, and does nothing otherwise.
A **for** loop allows a statement to be iterated as a variable assumes values in a specified sequence. It has the form:

```
for(variable in sequence) statement
```

A **while** loop does not use an explicit loop variable:

```
while (condition) expression
```

It repeats ‘expression’ as long as ‘condition’ holds. This makes it differently from the “if-statement” above.

We illustrate those control commands by examining a simple ‘doubling’ strategy in gambling.

You go to a casino to play a simple 0-1 game: you bet x dollars and flip a coin. You **win** $2x$ dollars and keep your bet if ‘Head’, and lose x dollars if ‘Tail’. You start 1 dollar in first game, and double your bet in each new games, i.e. you bet 2^{i-1} dollars in the i-th game, $i = 1, 2, \cdots$.
With this strategy, once you win, say, at the \((k + 1)\)-th game, you will recover all your losses in your previous games plus a profit of \(2^k + 1\) dollars, as

\[
2 \times 2^k > \sum_{i=1}^{k} 2^{i-1} = 2^k - 1.
\]

Hence as long as (i) the probability \(p\) of the occurrence of ‘Head’ is positive (no matter how small), and (ii) you have enough capital to keep you in the games, you may win handsomely at the end — is it really true?

Condition (ii) is not trivial, as the maximum loss in 20 games is \(2^{20} - 1 = 1,048,575\) dollars!

Plan A: Suppose you could afford to lose maximum \(n\) games and, therefore, decide to play \(n\) games. We define the \(R\)-function \(n\text{Games}\) below to simulate your final earning/loss (after \(n\) games).
nGames <- function(n,p) {
 # n is the No. of games to play
 # p is the prob of winning each game
 x <- 0 # earning after each game
 for(i in 1:n) ifelse(runif(1)<p, x <- x+2^i, x <- x-2^(i-1))
 # runif(1) returns a random number from uniform dist on (0, 1)
 x # print out your final earning/loss
}

To play $n = 20$ games with $p = 0.1$:

> nGames(20, 0.1)
[1] -999411
> nGames(20, 0.1)
[1] -1048575
> nGames(20, 0.1)
[1] 524289
> nGames(20, 0.1)
We repeated the experience 5 times above, with 5 different results.

One way to assess this gameplan is to repeat a large number of times and look at the average earning/loss:

```r
> x = vector(length=5000)
> for(i in 1:5000) x[i] <- nGames(20, 0.1)
> mean(x)
[1] -733915
```

In fact, this mean -733915 is stable measure reflecting the average loss of this gameplan.
Plan B: Play the maximum n, but quit as soon as winning one game. The R-function `winStop` simulates the earning/loss.

```
winStop <- function(n,p) {
    # n -- maximum No. of games, p -- prob of winning each game
    i <- 1
    ifelse(runif(1)<p, x<- 2, x<- -1) # play 1st game
    while((x<0)&(i<n)){ i <- i+1      # i records the no. of games played
        ifelse(runif(1)<p, x <- x+2^i, x <- x-2^(i-1))
    }
    x
}
```

Set $n = 20$, $p = 0.1$, we repeat the experience a few times:

```
> winStop(20, 0.1)
[1] 2
```
To assess the gameplan:

```r
> x <- 1:5000
> for(i in 1:5000) x[i] <- winStop(20, 0.1)
> mean(x)
[1] -112672.9  # This indicates "Plan B" is better than "Plan A"
> for(i in 1:5000) x[i] <- winStop(80, 0.1)
  # the maximum no. of games is 80 now
> mean(x)
```
With p as small as 0.1, you need a huge capital in order to play about 90 games to generate the positive returns in average.

The best and the most effective way to learn R: use it!

Hands-on experience is the most illuminating.